1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
use std::cmp::Ordering;
pub type Number = f32;
pub type Poly = Vec<Number>;
pub fn eval_poly(p: &Poly, t: Number) -> Number {
let mut r = 0.0;
for i in 0..p.len() {
r += p[i] * t.powi(i as i32);
}
r
}
pub fn sub(a: &Poly, b: &Poly) -> Poly {
let mut r = a.clone();
for i in 0..r.len() {
r[i] -= b[i];
}
r
}
pub fn skewed_sum(a: Poly, b: Poly) -> Poly {
let mut r = a.clone();
for i in 0..r.len() - 1 {
r[i + 1] += b[i];
}
r.push(b[b.len() - 1]);
r
}
fn is_zero(p: &Poly) -> bool {
for i in 0..p.len() {
if p[i] != 0.0 {
return false
}
}
true
}
fn degree(p: &Poly) -> usize {
let mut i = p.len() - 1;
while p[i] == 0.0 && i > 0 {
i -= 1;
}
i
}
fn prod(p: &Poly, n: Number) -> Poly {
let mut r = p.clone();
for i in 0..r.len() {
r[i] *= n;
}
r
}
fn shift(p: &Poly, amount: usize) -> Poly {
let mut r = vec![0.0; p.len()];
for i in 0..p.len() {
if i + amount < r.len() {
r[i + amount] = p[i];
}
}
r
}
fn rem(a: &Poly, b: &Poly) -> Poly {
let an = a[degree(a)];
let bn = b[degree(b)];
match degree(a).cmp(°ree(b)) {
Ordering::Equal => sub(a, &prod(b, an / bn)),
Ordering::Greater => sub(a, &prod(&shift(b, (degree(a) - degree(b)) as usize), an / bn)),
Ordering::Less => vec![0.0; b.len()]
}
}
pub fn gcd(a: &Poly, b: &Poly) -> Poly {
let c = rem(a, b);
if is_zero(&c) {
b.clone()
} else {
gcd(b, &c)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn poly_is_zero() {
let p = vec![0.0; 5];
assert_eq!(is_zero(&p), true);
}
#[test]
fn poly_is_not_zero() {
let mut p = vec![0.0; 5];
p[2] = 8.0;
assert_eq!(is_zero(&p), false);
}
#[test]
fn degree_is_five() {
let mut p = vec![0.0; 6];
p[5] = 2.0;
assert_eq!(degree(&p), 5);
}
#[test]
fn degree_is_zero() {
let p = vec![0.0; 6];
assert_eq!(degree(&p), 0);
}
#[test]
fn prod_test() {
let p = vec![1.0, 2.0, 3.0, 4.0, 5.0];
assert_eq!(prod(&p, 2.0), vec![2.0, 4.0, 6.0, 8.0, 10.0]);
}
#[test]
fn shift_test() {
let p = vec![1.0, 2.0, 3.0, 0.0, 0.0];
assert_eq!(shift(&p, 2), vec![0.0, 0.0, 1.0, 2.0, 3.0]);
}
#[test]
fn rem_equal() {
let a = vec![6.0, 7.0, 1.0];
let b = vec![-6.0, -5.0, 1.0];
assert_eq!(rem(&a, &b), vec![12.0, 12.0, 0.0]);
}
#[test]
fn rem_greater() {
let a = vec![-6.0, -5.0, 1.0];
let b = vec![12.0, 12.0, 0.0];
assert_eq!(rem(&a, &b), vec![-6.0, -6.0, 0.0]);
}
#[test]
fn gcd_test() {
let a = vec![6.0, 7.0, 1.0];
let b = vec![-6.0, -5.0, 1.0];
assert_eq!(gcd(&a, &b), vec![-6.0, -6.0, 0.0]);
}
}
|