mod iter; use crate::number::Number; use iter::Iter; use std::cmp; use std::cmp::Ordering; use std::ops::{Add, Sub, Mul}; use std::iter::{Sum, Zip, Take}; #[derive(PartialEq, Debug)] pub struct P(Vec); impl P { fn degree(&self) -> usize { let mut i = self.0.len() - 1; while self.0[i] == 0.0 && i > 0 { i -= 1; } i } fn iter(&self) -> Iter { Iter::new(self.0.clone()) } fn zip(&self, other: &Self) -> Zip, Take> { let deg = cmp::max(self.degree(), other.degree()) + 1; let a = self.iter().take(deg); let b = other.iter().take(deg); a.zip(b) } } impl Add for &P { type Output = P; fn add(self, other: Self) -> P { P(self.zip(other).map(|(x, y)| {x + y}).collect()) } } impl Sub for &P { type Output = P; fn sub(self, other: Self) -> P { P(self.zip(other).map(|(x, y)| {x - y}).collect()) } } impl Mul for &P { type Output = P; fn mul(self, other: Self) -> P { let mut r = Vec::new(); for i in 0..other.degree() + 1 { let mut prefix = vec![0.0; i]; let mut suffix: Vec = self.iter() .take(self.degree() + 1) .map(|x| {x * other.0[i]}) .collect(); prefix.append(&mut suffix); r.push(P(prefix)); } r.iter().fold(P(vec![0.0]), |acc, x| &acc + x) } } //****************************REFACTORING************************************ pub type Poly = Vec; pub fn eval_poly(p: &Poly, t: Number) -> Number { let mut r = 0.0; for i in 0..p.len() { r += p[i] * t.powi(i as i32); } r } pub fn sub(a: &Poly, b: &Poly) -> Poly { let mut r = a.clone(); for i in 0..r.len() { r[i] -= b[i]; } r } pub fn skewed_sum(a: Poly, b: Poly) -> Poly { let mut r = a.clone(); for i in 0..r.len() - 1 { r[i + 1] += b[i]; } r.push(b[b.len() - 1]); r } fn is_zero(p: &Poly) -> bool { for i in 0..p.len() { if p[i] != 0.0 { return false } } true } fn degree(p: &Poly) -> usize { let mut i = p.len() - 1; while p[i] == 0.0 && i > 0 { i -= 1; } i } fn prod(p: &Poly, n: Number) -> Poly { let mut r = p.clone(); for i in 0..r.len() { r[i] *= n; } r } fn shift(p: &Poly, amount: usize) -> Poly { let mut r = vec![0.0; p.len()]; for i in 0..p.len() { if i + amount < r.len() { r[i + amount] = p[i]; } } r } fn rem(a: &Poly, b: &Poly) -> Poly { let an = a[degree(a)]; let bn = b[degree(b)]; match degree(a).cmp(°ree(b)) { Ordering::Equal => sub(a, &prod(b, an / bn)), Ordering::Greater => sub(a, &prod(&shift(b, (degree(a) - degree(b)) as usize), an / bn)), Ordering::Less => vec![0.0; b.len()] } } pub fn gcd(a: &Poly, b: &Poly) -> Poly { let c = rem(a, b); if is_zero(&c) { b.clone() } else { gcd(b, &c) } } #[cfg(test)] mod tests { use super::*; #[test] fn mul_test() { let a = P(vec![1.0, 2.0, 3.0]); let b = P(vec![1.0, 2.0]); assert_eq!(&a * &b, P(vec![1.0, 4.0, 7.0, 6.0])); } #[test] fn add_test() { let a = P(vec![1.0]); let b = P(vec![0.0, 0.0, 0.0, 1.0]); assert_eq!(&a + &b, P(vec![1.0, 0.0, 0.0, 1.0])); } #[test] fn sub_test() { let a = P(vec![1.0, 2.0, 3.0]); let b = P(vec![1.0]); assert_eq!(&a - &b, P(vec![0.0, 2.0, 3.0])); } #[test] fn poly_is_zero() { let p = vec![0.0; 5]; assert_eq!(is_zero(&p), true); } #[test] fn poly_is_not_zero() { let mut p = vec![0.0; 5]; p[2] = 8.0; assert_eq!(is_zero(&p), false); } #[test] fn degree_is_five() { let mut p = vec![0.0; 6]; p[5] = 2.0; assert_eq!(degree(&p), 5); } #[test] fn degree_is_zero() { let p = vec![0.0; 6]; assert_eq!(degree(&p), 0); } #[test] fn prod_test() { let p = vec![1.0, 2.0, 3.0, 4.0, 5.0]; assert_eq!(prod(&p, 2.0), vec![2.0, 4.0, 6.0, 8.0, 10.0]); } #[test] fn shift_test() { let p = vec![1.0, 2.0, 3.0, 0.0, 0.0]; assert_eq!(shift(&p, 2), vec![0.0, 0.0, 1.0, 2.0, 3.0]); } #[test] fn rem_equal() { let a = vec![6.0, 7.0, 1.0]; let b = vec![-6.0, -5.0, 1.0]; assert_eq!(rem(&a, &b), vec![12.0, 12.0, 0.0]); } #[test] fn rem_greater() { let a = vec![-6.0, -5.0, 1.0]; let b = vec![12.0, 12.0, 0.0]; assert_eq!(rem(&a, &b), vec![-6.0, -6.0, 0.0]); } #[test] fn gcd_test() { let a = vec![6.0, 7.0, 1.0]; let b = vec![-6.0, -5.0, 1.0]; assert_eq!(gcd(&a, &b), vec![-6.0, -6.0, 0.0]); } }