mod iter; use crate::number::Number; use iter::Iter; use std::ops::{Add, Sub, Mul, Div}; #[derive(PartialEq, Debug, Clone)] pub struct Poly(pub Vec); impl Poly { fn mono(degree: usize, coefficient: Number) -> Poly { let mut p = vec![0.0; degree + 1]; p[degree] = coefficient; Poly(p) } fn degree(&self) -> usize { let mut i = self.0.len() - 1; while self.0[i] == 0.0 && i > 0 { i -= 1; } i } fn lc(&self) -> Number { self.0[self.degree()] } fn iter(&self) -> Iter { Iter::new(self.0.clone(), self.degree()) } pub fn eval(&self, n: Number) -> Number { let mut r = 0.0; for i in 0..self.0.len() { r += self.0[i] * n.powi(i as i32); } r } fn is_zero(&self) -> bool { for i in 0..self.0.len() { if self.0[i] != 0.0 { return false } } true } } impl Add for &Poly { type Output = Poly; fn add(self, other: Self) -> Poly { Poly(self.iter().zip(other.iter()).map(|(x, y)| {x + y}).collect()) } } impl Sub for &Poly { type Output = Poly; fn sub(self, other: Self) -> Poly { Poly(self.iter().zip(other.iter()).map(|(x, y)| {x - y}).collect()) } } impl Mul for &Poly { type Output = Poly; fn mul(self, other: Self) -> Poly { let mut r = Vec::new(); for i in 0..other.degree() + 1 { let mut prefix = vec![0.0; i]; let mut suffix: Vec = self.iter() .take(self.degree() + 1) .map(|x| {x * other.0[i]}) .collect(); prefix.append(&mut suffix); r.push(Poly(prefix)); } r.iter().fold(Poly(vec![0.0]), |acc, x| &acc + x) } } impl Div for &Poly { type Output = (Poly, Poly); fn div(self, divisor: Self) -> (Poly, Poly) { let mut q = Poly(vec![0.0]); let mut r = self.clone(); while !r.is_zero() && r.degree() >= divisor.degree() { let s = Poly::mono(r.degree() - divisor.degree(), r.lc() / divisor.lc()); q = &q + &s; r = &r - &(&s * divisor); } (q, r) } } pub fn gcd(a: &Poly, b: &Poly) -> Poly { let (_, c) = a / b; if c.is_zero() { b.clone() } else { gcd(b, &c) } } #[cfg(test)] mod tests { use super::*; #[test] fn div_equal() { let a = Poly(vec![6.0, 7.0, 1.0]); let b = Poly(vec![-6.0, -5.0, 1.0]); assert_eq!(&a / &b, (Poly(vec![1.0]), Poly(vec![12.0, 12.0, 0.0]))); } #[test] fn div_greater() { let a = Poly(vec![-6.0, -5.0, 1.0]); let b = Poly(vec![12.0, 12.0]); assert_eq!(&a / &b, (Poly(vec![-0.5, 1.0/12.0]), Poly(vec![0.0, 0.0]))); } #[test] fn div_less() { let a = Poly(vec![12.0, 12.0]); let b = Poly(vec![-6.0, -5.0, 1.0]); assert_eq!(&a / &b, (Poly(vec![0.0]), a)); } #[test] fn mul_test() { let a = Poly(vec![1.0, 2.0, 3.0]); let b = Poly(vec![1.0, 2.0]); assert_eq!(&a * &b, Poly(vec![1.0, 4.0, 7.0, 6.0])); } #[test] fn add_test() { let a = Poly(vec![1.0]); let b = Poly(vec![0.0, 0.0, 0.0, 1.0]); assert_eq!(&a + &b, Poly(vec![1.0, 0.0, 0.0, 1.0])); } #[test] fn sub_test() { let a = Poly(vec![1.0, 2.0, 3.0]); let b = Poly(vec![1.0, 1.0, 1.0]); assert_eq!(&a - &b, Poly(vec![0.0, 1.0, 2.0])); } #[test] fn poly_is_zero() { let p = Poly(vec![0.0; 5]); assert_eq!(p.is_zero(), true); } #[test] fn poly_is_not_zero() { let mut p = vec![0.0; 5]; p[2] = 8.0; assert_eq!(Poly(p).is_zero(), false); } #[test] fn degree_is_five() { let mut p = vec![0.0; 6]; p[5] = 2.0; assert_eq!(Poly(p).degree(), 5); } #[test] fn degree_is_zero() { let p = Poly(vec![0.0; 6]); assert_eq!(p.degree(), 0); } #[test] fn gcd_test() { let a = Poly(vec![2.0, -8.0, 8.0]); let b = Poly(vec![-1.0, 4.0, -1.0]); assert_eq!(gcd(&a, &b), Poly(vec![-0.0625, 0.0])); } }