mod iter;

use crate::number::Number;
use iter::Iter;
use std::ops::{Add, Sub, Mul, Div};

#[derive(PartialEq, Debug, Clone)]
pub struct Poly {
    data: Vec<Number>,
    degree: usize
}

impl Poly {
    pub fn new(data: Vec<Number>) -> Poly {
        let mut i = data.len() - 1;
        while data[i] == 0.0 && i > 0 {
            i -= 1;
        }
        Poly { data, degree : i }
    }

    fn mono(degree: usize, coefficient: Number) -> Poly {
        if coefficient != 0.0 {
            let mut p = vec![0.0; degree + 1];
            p[degree] = coefficient;
            Poly::new(p)
        } else {
            Poly::new(vec![0.0])
        }
    }

    fn degree(&self) -> usize {
        self.degree
    }

    fn lc(&self) -> Number {
        self.data[self.degree()]
    }

    fn iter(&self) -> Iter {
        Iter::new(self.data.clone(), self.degree())
    }

    pub fn eval(&self, n: Number) -> Number {
        let mut r = 0.0;
        for i in 0..self.data.len() {
            r += self.data[i] * n.powi(i as i32);
        }
        r
    }

    fn is_zero(&self) -> bool {
        for i in 0..self.data.len() {
            if self.data[i] != 0.0 {
                return false
            }
        }
        true
    }
}

impl Add for &Poly {
    type Output = Poly;

    fn add(self, other: Self) -> Poly {
        Poly::new(self.iter().zip(other.iter()).map(|(x, y)| {x + y}).collect())
    }
}

impl Sub for &Poly {
    type Output = Poly;

    fn sub(self, other: Self) -> Poly {
        Poly::new(self.iter().zip(other.iter()).map(|(x, y)| {x - y}).collect())
    }
}

impl Mul for &Poly {
    type Output = Poly;

    fn mul(self, other: Self) -> Poly {
        let mut r = Vec::new();
        for i in 0..other.degree() + 1 {
            let mut prefix = vec![0.0; i];
            let mut suffix: Vec<Number> = self.iter()
                .take(self.degree() + 1)
                .map(|x| {x * other.data[i]})
                .collect();
            prefix.append(&mut suffix);
            r.push(Poly::new(prefix));
        }
        r.iter().fold(Poly::new(vec![0.0]), |acc, x| &acc + x)
    }
}

impl Div for &Poly {
    type Output = (Poly, Poly);

    fn div(self, divisor: Self) -> (Poly, Poly) {
        let mut q = Poly::new(vec![0.0]);
        let mut r = self.clone();
        while !r.is_zero() && r.degree() >= divisor.degree() {
            let s = Poly::mono(r.degree() - divisor.degree(), r.lc() / divisor.lc());
            q = &q + &s;
            r = &r - &(&s * divisor);
        }
        (q, r)
    }
}

pub fn gcd(a: &Poly, b: &Poly) -> Poly {
    let (_, c) = a / b;
    if c.is_zero() {
        b.clone()
    } else {
        gcd(b, &c)
    }
}

pub fn derivative(p: &Poly) -> Poly {
    let mut v = vec![0.0; p.degree()];
    for i in 0..v.len() {
        v[i] = p.data[i + 1] * (i + 1) as Number;
    }
    Poly::new(v)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn derivative_test() {
        let p = Poly::new(vec![1.0, 2.0, 3.0, 4.0, 5.0]);
        assert_eq!(derivative(&p), Poly::new(vec![2.0, 6.0, 12.0, 20.0]));
    }

    #[test]
    fn div_equal() {
        let a = Poly::new(vec![6.0, 7.0, 1.0]);
        let b = Poly::new(vec![-6.0, -5.0, 1.0]);
        assert_eq!(&a / &b, (Poly::new(vec![1.0]), Poly::new(vec![12.0, 12.0, 0.0])));
    }

    #[test]
    fn div_greater() {
        let a = Poly::new(vec![-6.0, -5.0, 1.0]);
        let b = Poly::new(vec![12.0, 12.0]);
        assert_eq!(&a / &b, (Poly::new(vec![-0.5, 1.0/12.0]), Poly::new(vec![0.0, 0.0])));
    }

    #[test]
    fn div_less() {
        let a = Poly::new(vec![12.0, 12.0]);
        let b = Poly::new(vec![-6.0, -5.0, 1.0]);
        assert_eq!(&a / &b, (Poly::new(vec![0.0]), a));
    }

    #[test]
    fn mul_test() {
        let a = Poly::new(vec![1.0, 2.0, 3.0]);
        let b = Poly::new(vec![1.0, 2.0]);
        assert_eq!(&a * &b, Poly::new(vec![1.0, 4.0, 7.0, 6.0]));
    }

    #[test]
    fn add_test() {
        let a = Poly::new(vec![1.0]);
        let b = Poly::new(vec![0.0, 0.0, 0.0, 1.0]);
        assert_eq!(&a + &b, Poly::new(vec![1.0, 0.0, 0.0, 1.0]));
    }

    #[test]
    fn sub_test() {
        let a = Poly::new(vec![1.0, 2.0, 3.0]);
        let b = Poly::new(vec![1.0, 1.0, 1.0]);
        assert_eq!(&a - &b, Poly::new(vec![0.0, 1.0, 2.0]));
    }

    #[test]
    fn poly_is_zero() {
        let p = Poly::new(vec![0.0; 5]);
        assert_eq!(p.is_zero(), true);
    }

    #[test]
    fn poly_is_not_zero() {
        let p = Poly::mono(5, 8.0);
        assert_eq!(p.is_zero(), false);
    }

    #[test]
    fn degree_is_five() {
        let p = Poly::mono(5, 2.0);
        assert_eq!(p.degree(), 5);
    }

    #[test]
    fn degree_is_zero() {
        let p = Poly::new(vec![0.0; 6]);
        assert_eq!(p.degree(), 0);
    }

    #[test]
    fn gcd_test() {
        let a = Poly::new(vec![2.0, -8.0, 8.0]);
        let b = Poly::new(vec![-1.0, 4.0, -1.0]);
        assert_eq!(gcd(&a, &b), Poly::new(vec![-0.0625, 0.0]));
    }
}