use std::cmp::Ordering; pub type Number = f32; pub type Poly = Vec; #[derive(Debug)] pub enum Lerp { Node(Box, Box), Leaf(Number, Number) } impl Lerp { pub fn new(v: Vec) -> Box { Lerp::new_s(&v[..]) } fn new_s(v: &[Number]) -> Box { match v.len() { 0 => Box::new(Lerp::Leaf(0.0, 0.0)), 1 => Box::new(Lerp::Leaf(v[0], v[0])), 2 => Box::new(Lerp::Leaf(v[0], v[1])), _ => Box::new(Lerp::Node(Lerp::new_s(&v[0..v.len() - 1]), Lerp::new_s(&v[1..v.len()]))) } } } pub fn lp(l: Box) -> Poly { match *l { Lerp::Leaf(a, b) => vec![a, b - a], Lerp::Node(a, b) => { let a = lp(a); let b = lp(b); let c = sub(&b, &a); skewed_sum(a, c) } } } fn sub(a: &Poly, b: &Poly) -> Poly { let mut r = a.clone(); for i in 0..r.len() { r[i] -= b[i]; } r } fn skewed_sum(a: Poly, b: Poly) -> Poly { let mut r = a.clone(); for i in 0..r.len() - 1 { r[i + 1] += b[i]; } r.push(b[b.len() - 1]); r } fn is_zero(p: &Poly) -> bool { for i in 0..p.len() { if p[i] != 0.0 { return false } } true } fn degree(p: &Poly) -> usize { let mut i = p.len() - 1; while p[i] == 0.0 && i > 0 { i -= 1; } i } fn prod(p: &Poly, n: Number) -> Poly { let mut r = p.clone(); for i in 0..r.len() { r[i] *= n; } r } fn shift(p: &Poly, amount: usize) -> Poly { let mut r = vec![0.0; p.len()]; for i in 0..p.len() { if i + amount < r.len() { r[i + amount] = p[i]; } } r } fn rem(a: &Poly, b: &Poly) -> Poly { let an = a[degree(a)]; let bn = b[degree(b)]; match degree(a).cmp(°ree(b)) { Ordering::Equal => sub(a, &prod(b, an / bn)), Ordering::Greater => sub(a, &prod(&shift(b, (degree(a) - degree(b)) as usize), an / bn)), Ordering::Less => vec![0.0; b.len()] } } pub fn gcd(a: &Poly, b: &Poly) -> Poly { let c = rem(a, b); if is_zero(&c) { b.clone() } else { gcd(b, &c) } } #[cfg(test)] mod tests { use super::*; #[test] fn poly_is_zero() { let p = vec![0.0; 5]; assert_eq!(is_zero(&p), true); } #[test] fn poly_is_not_zero() { let mut p = vec![0.0; 5]; p[2] = 8.0; assert_eq!(is_zero(&p), false); } #[test] fn degree_is_five() { let mut p = vec![0.0; 6]; p[5] = 2.0; assert_eq!(degree(&p), 5); } #[test] fn degree_is_zero() { let p = vec![0.0; 6]; assert_eq!(degree(&p), 0); } #[test] fn prod_test() { let p = vec![1.0, 2.0, 3.0, 4.0, 5.0]; assert_eq!(prod(&p, 2.0), vec![2.0, 4.0, 6.0, 8.0, 10.0]); } #[test] fn shift_test() { let p = vec![1.0, 2.0, 3.0, 0.0, 0.0]; assert_eq!(shift(&p, 2), vec![0.0, 0.0, 1.0, 2.0, 3.0]); } #[test] fn rem_equal() { let a = vec![6.0, 7.0, 1.0]; let b = vec![-6.0, -5.0, 1.0]; assert_eq!(rem(&a, &b), vec![12.0, 12.0, 0.0]); } #[test] fn rem_greater() { let a = vec![-6.0, -5.0, 1.0]; let b = vec![12.0, 12.0, 0.0]; assert_eq!(rem(&a, &b), vec![-6.0, -6.0, 0.0]); } #[test] fn gcd_test() { let a = vec![6.0, 7.0, 1.0]; let b = vec![-6.0, -5.0, 1.0]; assert_eq!(gcd(&a, &b), vec![-6.0, -6.0, 0.0]); } }